Hera Services & Technology

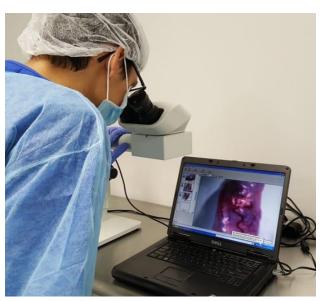
Hera BioLabs


About Hera & Project Execution Oncology Model Examples Gene Editing Tools & Capabilities

Chris Brenzel Sr. Director, Business Development cbrenzel@herabiolabs.com 859-967-9672

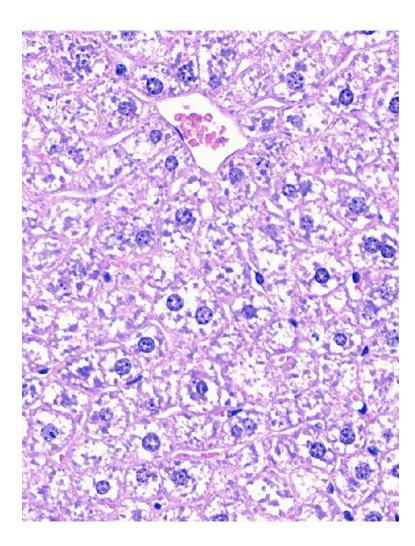
About Hera BioLabs

Proprietary Gene Editing Technologies piggyBac[®] Cas-CLOVER™ TAL-CLOVER™



Our Facility and Vivarium

- AAALAC accredited animal welfare program
- Barrier facility with Innovive IVC caging system
- Digital data acquisition viaStudyLog®systems software
- Surgical suite & gowning room
- Molecular and cell culture facility
- Bighly trained and certified staff



Rodent Toxicology

Hera BioLabs

Toxicology Studies in mice and rats

<u>Services</u>

Max tolerable dose Pharmacokinetics Pharmacodynamics Clinical examination CBC & toxicology Urinalysis Other clinical chemistries

Necropsy:

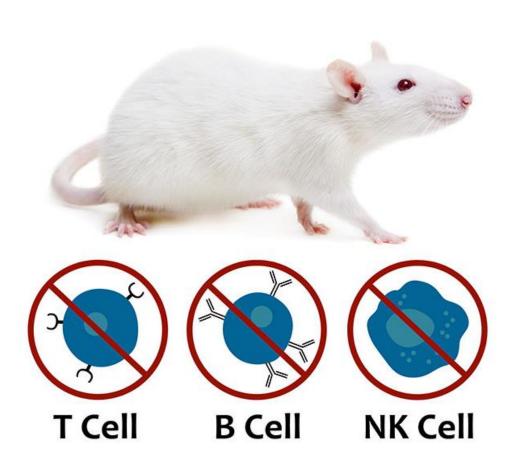
Organ weight Body composition FFPE, OCT, flash freeze

Study designs:

Acute Subchronic Chronic

Routes:

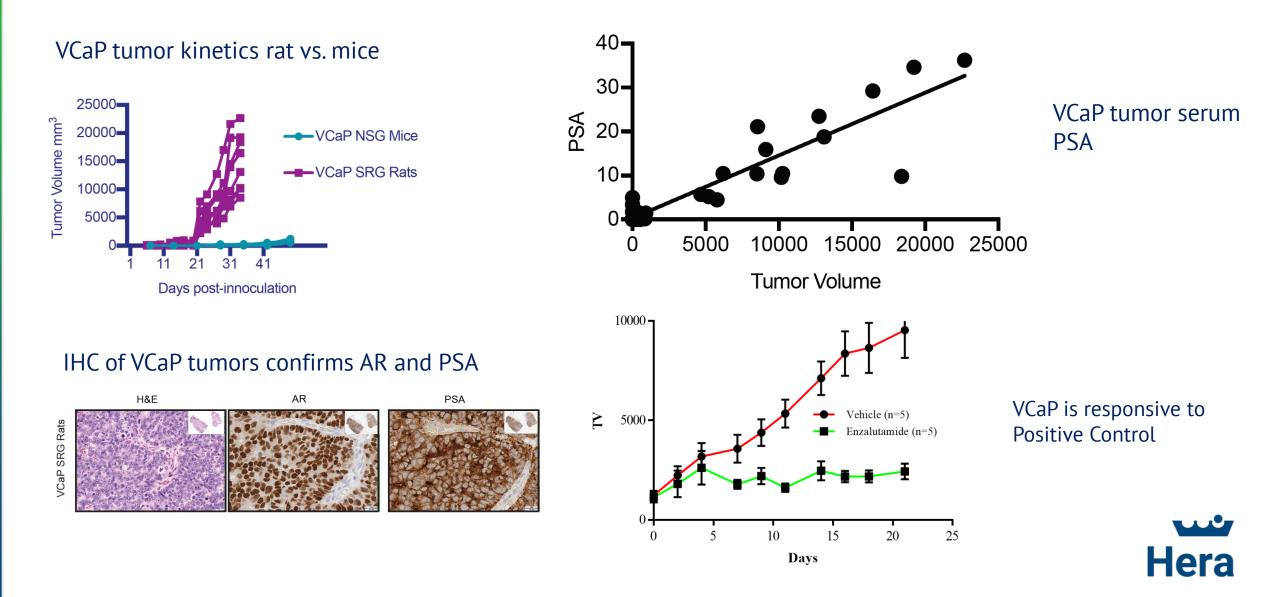
Oral Subcutaneous Infusion Intravenous Intraperitoneal Rectal



In vivo Oncology Models

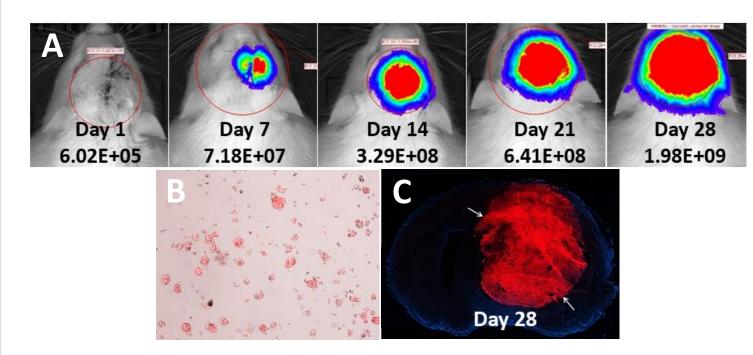
Hera BioLabs

The SRG OncoRat®



SRG OncoRat: Building a Better Trap for Cancer

Developed using Hera Biolabs' advanced gene editing technology, is a SCID rat on the Sprague-Dawley background that harbors a double knockout for the Rag2 and Il2Rγ genes.


- Enhanced immunodeficiency: lacks B-cells, T-cells, and NK-cells.
- Enhanced engraftment rates
- Improved tumor growth for both cell-line tumor models and patient-derived xenografts (PDXs)
- Perform serial tumor biopsies
- Combine efficacy, pharmacokinetic (PK), biomarker, and toxicology studies

Cancer Xenograft Studies: Human Prostate Example

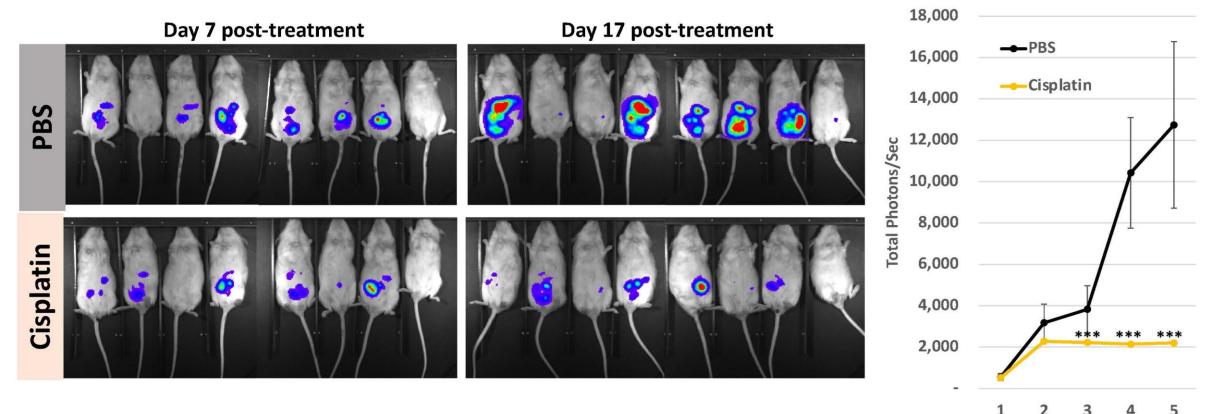
SRG rat brain size permits translational interventions and imaging

In vivo bioluminescent imaging to track tumor growth

- A) signal expansion over 4 weeks.
 The tumors become symptomatic after ~4 weeks of growth.
- B) Patient GBM stem-like cells (4x magnification) grown in spheres and transduced to express luciferase and tdTomato.
- C) Day 28 GBM PDX histology showing the tdTomato against DAPI.

List of cell-derived tumor models validated in the SRG rat

Model	Cancer Type	Notes
MOLM-13	Adult acute myeloid leukemia	Mutation in FLT3; Unexplicit; Internal tandem duplication
MDA-MB-231	Breast adenocarcinoma	Triple negative breast cancer; Mutations in CDKN2A, CDKN2B, BRAF, KRAS, TERT, TP53
MX-1	Breast adenocarcinoma	Mutation in TP53
HCC1954	Breast ductal carcinoma	HER2+ studies, ER- studies, AR inhibitors; Gene fusion CLTC-VMP1; Mutations in PIK3CA, TP53
MCF7	Invasive breast carcinoma	Derived from pleural effusion metastasis; Mutations in GATA3, PIK3CA, TP53
HCT-116	Colon carcinoma	Tumorigenesis, colorectal cancer metastasis, CDK inhibition, TGFβ+; Mutations in ACVR2A, BRCA2, CDKN2A, CTNNB1, EP300, KRAS, PIK3CA, TGFBR2
HT-1080	Fibrosarcoma	Cachexia studies; Gene deletion CDKN2A; Mutations in IDH1, NRAS
SNU-5	Gastric Carcinoma	Mutations in CDKN2A, TP53
U118-MG	Glioblastoma/Astrocytoma	Mutations in PTEN, TP53
U87-MG	Glioblastoma	Historic data comparisons (some model controversy); Mutations in NF1, PTEN, TERT
Нер3В	Hepatocellular carcinoma, pediatric	a.k.a Hep 3B2.1-7; Mutations in AXIN1, RB1
OCI-AML2	Leukemia, adult acute myeloid	NOS and VEGF signaling, angiogenesis inhibitors, DNA methylation; Gene fusion KMT2A-AFDN
K-562	Leukemia, blast chronic myelogenous	Cachexia studies; BCR-ABL1 positive. Gene fusion BCR-ABL1; Mutation in TP53
A-549	Lung adenocarcinoma	Mutations in KRAS, STK11, TP53
NCI-H1975	Lung adenocarcinoma	Mutations in EGFR, PIK3CA, TP53
NCI-H226	Lung, pleural epithelioid mesothelioma	Gene deletion CDKN2A
NCI-H322	Lung adenocarcinoma, minimally invasive	Mutation in TP53

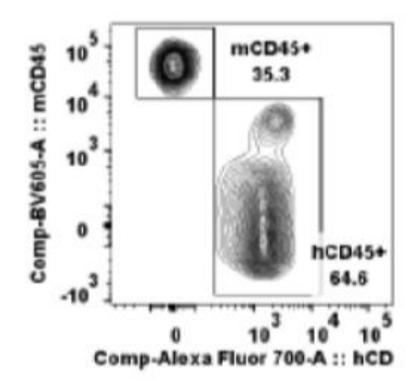

List of cell-derived tumor models validated in the SRG rat

Model	Cancer Type	Notes
HCC-95	Lung, squamous cell carcinoma	Derived from metastatic site: Pleural effusion
NCI-H2170	Lung squamous cell carcinoma	Mutations in RHOA and TP53
NCI-H1734	NSCLC, Lung adenocarcinoma	Mutations in ATM, KRAS, RB1, TP53
NCI-H2122	NSCLC, Lung adenocarcinoma	Mutations in KRAS, TP53
NCI-H358	NSCLC, Lung adenocarcinoma	KRAS & EGFR signaling, metastasis to lungs; Gene deletion TP53; Mutation in KRAS
NCI-H441	NSCLC, papillary adenocarcinoma	Mutations in KRAS, TP53
Daudi	Lymphoma, EBV-related Burkitt	Gene fusion MYC-IGH; Mutation B2M, CTNNB1, TP53
OV81*	Ovarian, serous	Mutation in BRCA2, *Developed by Hera BioLabs
Capan-2	Pancreatic ductal adenocarcinoma	Mutations in CDKN2A, KRAS, TP53
MIA PaCa-2	Pancreatic ductal adenocarcinoma	Epithelial-to-mesenchymal transition (EMT); Gene deletion CDKN2A. Mutations in KRAS, TP53
22Rv1	Prostate carcinoma	Mutations in KMT2D, PIK3CA, TP53
LNCaP	Prostate carcinoma	AR inhibtors, castration resistance studies; Mutations in AR, MEN1, PIK3R1, PTEN, TP53
NCI-H660	Prostate small cell carcinoma	Gene fusion TMPRSS2-ERG
PC-3	Prostate carcinoma	Derived from metastatic site: Bone. Mutation in TP53
VCaP-EnzR	Prostate carcinoma	Enzalutime drug resistance studies, castration resistant studies
VCaP	Prostate Carcinoma	AR resistance, castration resistant studies; Gene fusion TMPRSS2-ERG; Mutation MLH1; TP53;
786-0	Renal Cell Carcinoma	VEGF inhibition studies, bone metastasis development, hypoxia and tumor progression; Mutations in PTEN, TERT, TP53, VHL
SCC-090	Tongue squamous cell carcinoma	Cells are positive for Human Papilloma Virus (HPV)

NSG mice: human ovarian cancer xenograft example

OV81.2-luciferase platinum study: NSG mice inoculated with 1 x 10⁶ OV81.2-luc cells Fluorescent reporters can be imaged in vivo with our *Ami HT* from *Spectral Instruments Imaging*

Weeks



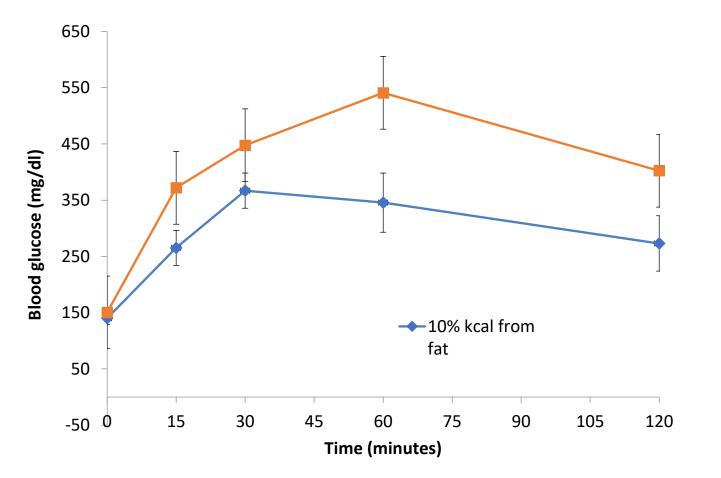
Immuno-Oncology Services

Humanized immune mouse models

- Immuno-oncology: mice engrafted with CD34+ hematopoietic stem/progenitor cells (HSPCs) for development of multilineage human immune cells.
- Humanized mouse models or your specific donor, whether HLA matching or engineered cells for your preclinical studies.

Flow cytometry of peripheral blood for human CD45+ 8 weeks after BMT

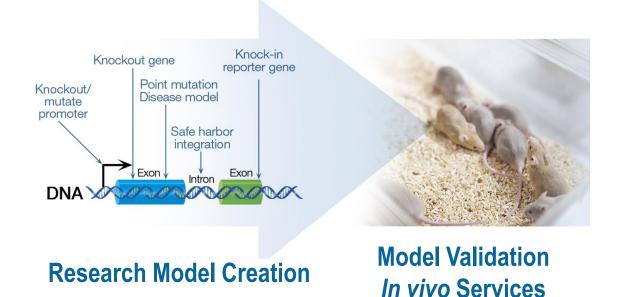
نىپ Hera


Other Disease Models

Hera BioLabs

Diabetes and metabolism

The SRG rat develops impaired glucose tolerance after 10 weeks of high fat diet.

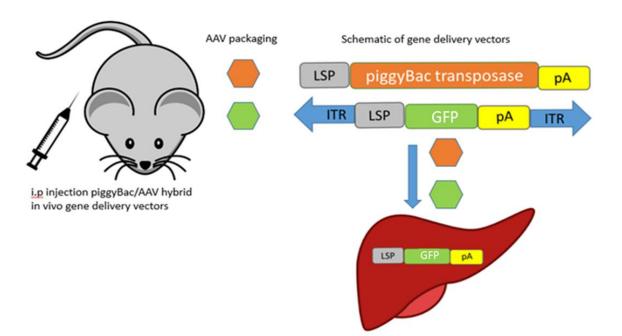


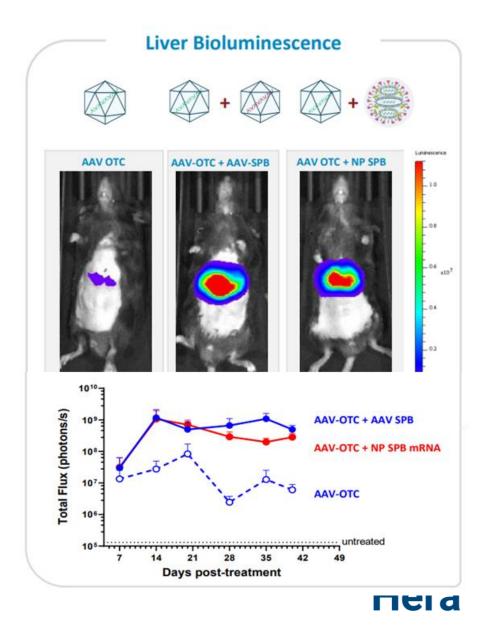
- Mice & Rats
- Diet-induced obesity
- Streptozotocin
- Glucose tolerance testing
- Insulin tolerance testing
- Ex vivo body composition

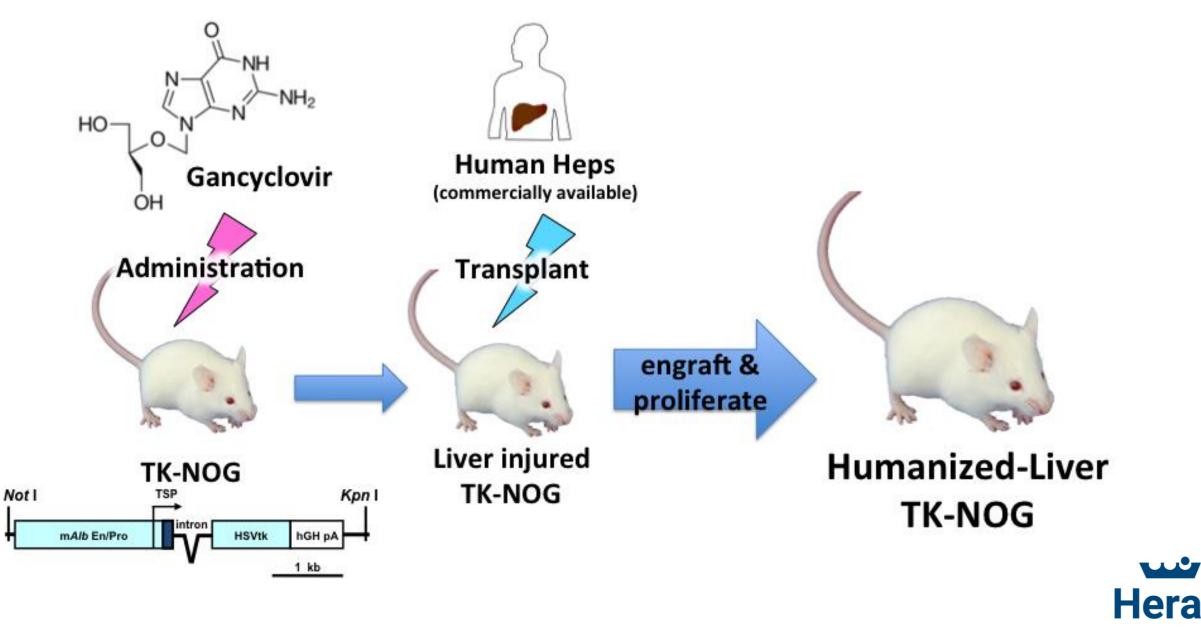
The SRG Rat can be used to test cell-based therapies for Type 1 and Type 2 Diabetes.

Animal model creation

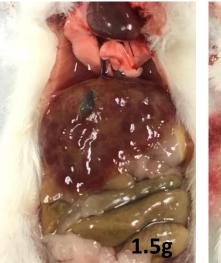
Custom rat and mouse models


- Knockout, knock-in, transgenic, BAC transgenic
- Embryo electroporation or PNI
- Breeding and colony maintenance, genotyping, and phenotyping
- **Drug efficacy studies**

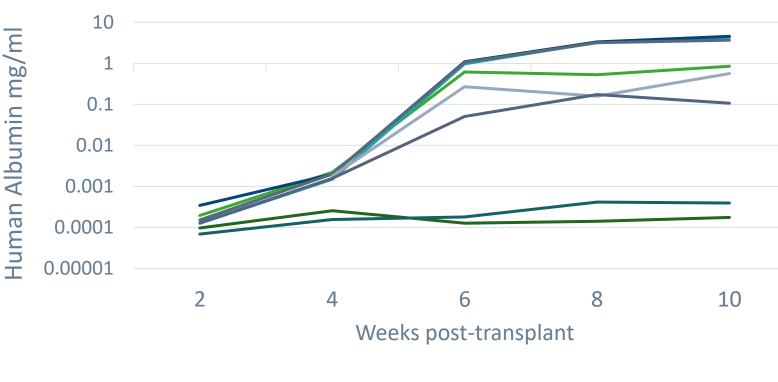

Hera's full-service capabilities allow for projects to move directly from model creation, to validation, to *in vivo* drug efficacy studies <u>saving time and resources</u>.


In vivo gene delivery

piggyBac is highly efficient at delivering transgenes in-vivo eliminating the need to create transgenic animal models.


Liver humanization in the TK-NOG mouse

TK-NOG mouse human albumin levels

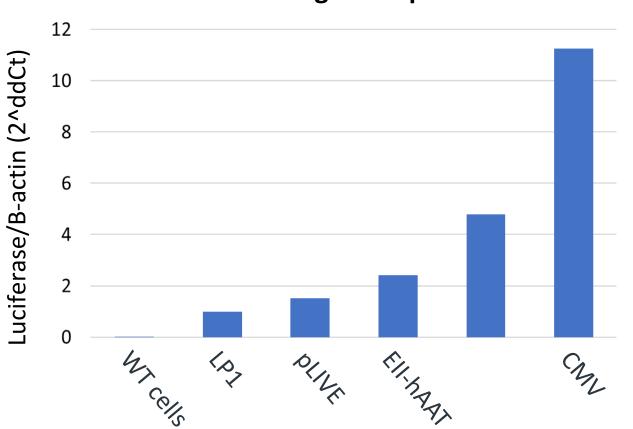


TK-NOG liver humanization

-1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

Molecular Biology & Gene Editing Tools

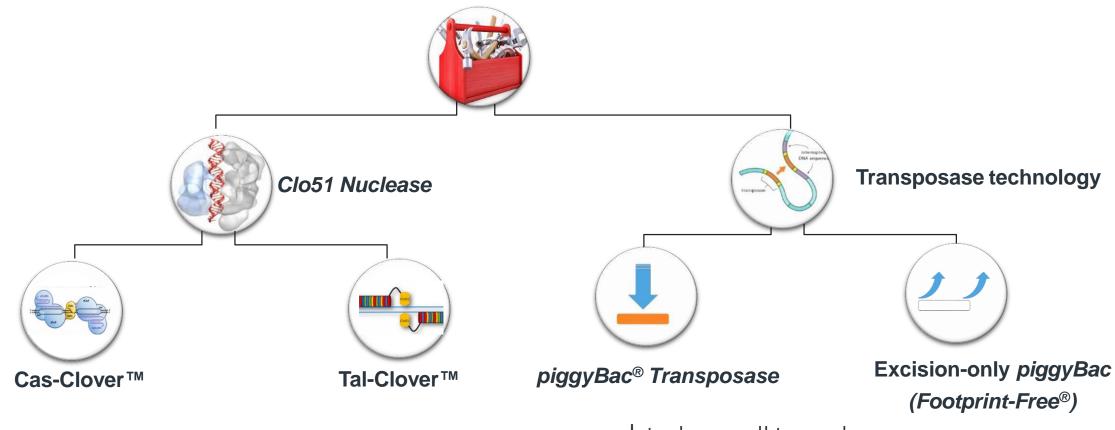
Hera BioLabs



Molecular biology

<u>At Hera</u>

Genotyping and Gene expression PCR and qPCR (Applied Biosystems StepOnePlus) ELISA & enzymatic assays colorimetric, fluorescent, chemilum In coordination with subcontractors Flow cytometry & FACS Multi-plex assays (MSD or Luminex) Histochemistry, immunohistochemistry Cell physiology Kill curves & viability


Other custom services

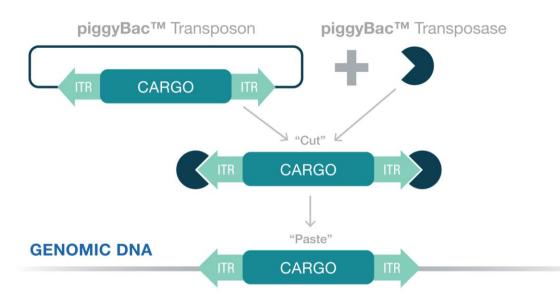
Luciferase gene expression

21

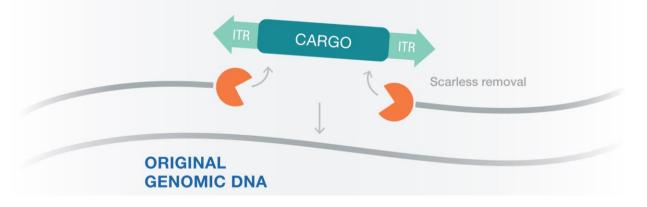
Proprietary Genetic Engineering Technologies

"Molecular Scissors" introduce targeted double strand breaks in genomic DNA

- Knockouts, knock-ins, base-pair edits
- No IP entanglements


Introduce small to very large gene cargo

Scarless removal of gene cargo

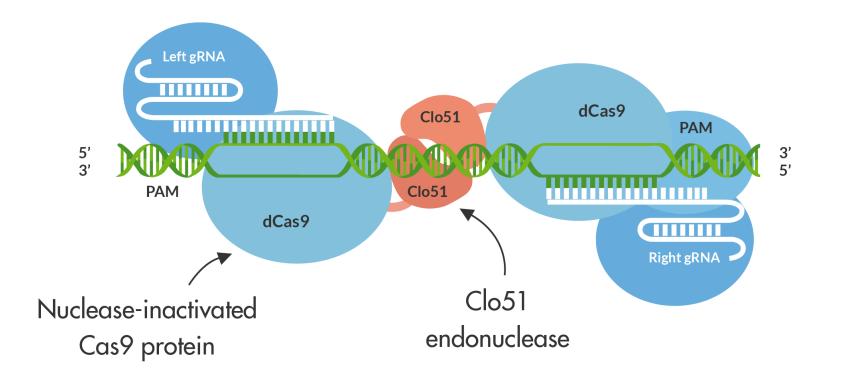

- Transgenics & stable cell lines
- Footprint-Free gene editing

Gene Editing Tools: piggyBac transposase

Footprint-Free™ Gene Editing with Excision-only piggyBac™ Transposase

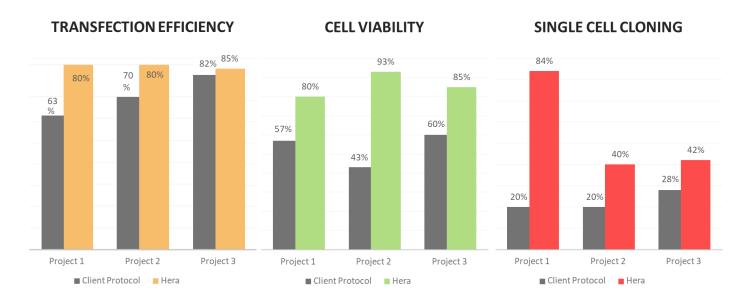
Features

- ✓ Small to enormous gene
 - integration (200kb+)
- ✓ Very efficient
- ✓ High expression
- ✓ Stable
- ✓ Scarless removal with


Footprint-Free[™] gene editing

The Cas-CLOVER[™] System

Benefits A Ease of use: double gRNA guided


- High efficiency: dCas9-guided RNA recognition
- In Section Section

Custom Cell Line Engineering/Gene Editing Services

- Experience with >70 different cell types
- Knockout, knock in, transgenic, and humanization
- **Footprint-Free** enables success where others have failed
 - Difficult edits or cell lines (iPSCs)
- All projects include cell line optimization step

Example List – Cell Projects

HEK293	DLD-1
A549	Feline ES cells
293T	TALL-104
H358	HUH-7
Hs578T	LNCap
Keratinocytes/neonatal foreskin	H596
Spermatogonial Stem cell	CCD841
hIPSC	MCF10A
THP-1	NCM356
U-937	NCM-460
HT-29	HEK293F
A375	HeLa S3
HCC-4006	HeLa
MV-4-11	C1498
MOLM-13	EL-4
FreeStyle 293F	E.G7 OVA
KHYG-1	MC38
TF-1	MOPC-315
Jurkat-E6-1	B16 F10
K562	MPC-11
CHO-K1	A-20
CHO-ZN	NK-92
	Horo

пега

Gene Editing Reagents

Cas-CLOVER™

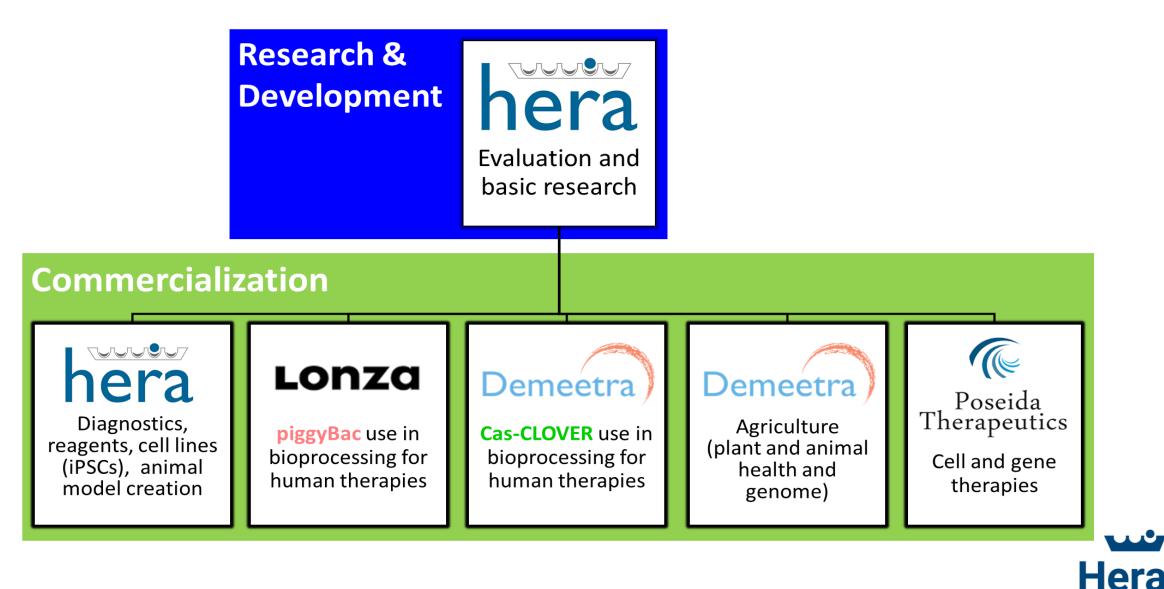
- Solution Custom designed nucleases
- **Ready to use DNA or RNA reagents**

piggyBac®

- Transposon vector catalogue (>20)
 - Specific promoters/selection markers for various projects

Transposases

- GMP & research grade mammalian codon optimized mRNA
- Excision-only transposase DNA and mRNA


Gene Editing Kits

- Section Cas-CLOVER + DNA templates
 - Knock-in projects paring Cas-CLOVER w/ DNA templates
 - In combination w/ piggyBac (Footprint-Free[®] Gene Editing)
- Sene Editing Kit Vectors

Cas-CLOVER and piggyBac licensing

The Hera Team

Michael Schlosser, Ph.D., DABT

Chief Executive Officer Mike joined Hera BioLabs in 2019 and has over 25 years of pharma/biotech industry experience with startups and small/large pharma. He founded Midwest BioResearch (MBR) in 2003, a nonclinical research service lab acquired in 2009 by WIL Research (now Charles River Labs). Prior to starting MBR, he was head of nonclinical safety at Pharmacia/Pfizer (Skokie) and held previous director level positions at Searle and Astra Pharmaceuticals. Mike has a PhD in pharmacology/toxicology from University of Mississippi (Ole Miss) and is a Diplomate of the American Board of Toxicology.

Diane Begemann, Ph.D.

Study Director, In Vivo Services Dr. Diane Begemann earned her PhD in Toxicology & Cancer Biology from the University of Kentucky in 2020. Dr. Begemann did her dissertation work in the lab of Dr. Natasha Kyprianou, focusing on mechanisms of chemotherapeutic resistance in models of prostate cancer.

After moving with her mentor, her dissertation work was completed at the Tisch Cancer Institute at Mount Sinai Hospital.

Dr. Valeriya Steffey

Director, In Vitro Services

Dr. Valeriya Steffey worked for Transposagen Biopharmaceuticals Inc. for over ten years, prior to joining Hera, where she distinguished herself as an innovative leader in both technology and business development. Dr. Steffey was the Director of Cell Line Engineering at Transposagen. Under her management, her team had a proven track record of successful completion of cell line engineering, engineered animal models and R&D projects.

R. Grace Walton, Ph.D.

Scientist, Business Development

Dr. Walton earned her Ph.D. at the University of Alabama at Birmingham, where she studied type 2 diabetes. She moved to the University of Kentucky for a post-doctoral fellowship with Philip Kern M.D. and Charlotte Peterson Ph.D., where she studied molecular mechanisms of exercise physiology. She remained in Dr. Peterson's lab as scientist and then as Research Assistant Professor.

Fallon Noto, Ph.D.

Executive Director, R&D/In Vivo Services

Dr. Noto has 15+ years working with mice and rats, expertise in rodent humanization, cell and tissue transplantation, microsurgery, and ethical animal care with 10+ publications in the field. She is proficient in cell culture techniques of mammalian cells, primary cells, and pluripotent stem cells, including differentiation assays and viral transduction. Dr. Noto is skilled in molecular techniques, including tissue histology, PCR, and protein expression analysis.

Chris Brenzel

Director, Scientific Business Development

Chris has been with Hera BioLabs since its inception in 2015. He has extensive experience in scientific business development, market research, and licensing for startups and fast-growing technology-based contract research organizations. He grew the gene-editing and animal models development businesses at Transposagen Biopharmaceuticals, a company acquired by Hera BioLabs in 2018. Contact Chris at cbrenzel@herabiolabs.com or 859-414-0648.

